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Abstract A graph similarity search is to find a set of graphs from a graph database that
are similar to a given query graph. Existing works solve this problem by first defining
a similarity measure between two graphs, and then presenting a filtering mechanism that
reduces the number of candidate graphs. The candidate graphs are then verified by per-
forming expensive graph search operations such as finding maximum common subgraphs.
Existing works, however, do not report some similar graphs from a graph database while
dissimilar graphs are not discarded during the filtering phase. To overcome this problem,
in this paper, we first present a graph distance measure that can identify hidden but sim-
ilar graphs that could not be discovered by previous graph distance measures. We then
devise a series of filtering and validation rules to discard and identify non-matching and
definitely-matching graphs, respectively, by calculating lower and upper bounds of the dis-
tance between a query and a data graph. To execute these filtering and validation rules
efficiently during runtime, an index structure is also proposed. Lastly, a verification algo-
rithm that verifies candidate graphs according to our graph distance measure is presented.
Experiments on real datasets show that our approach can efficiently and effectively perform
graph similarity search by significantly reducing the number of candidate graphs that must
be verified, and by returning similar graphs.

Keywords Graph · Graph similarity search · Graph database · Algorithms

1 Introduction

Graphs are widely used to model complex structured data in many advanced applications
such as bioinformatics [12], image processing [17], social networks [28], etc. In these appli-
cations, graph queries are performed to discover new domain knowledge, i.e., new graph
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Figure 1 Oxidation of lignans

patterns are retrieved and analyzed further to discover new relationships between primitive
components, or given a set of desired features, graph patterns that contain those features
can be retrieved. For example, in an image processing system, an image can be represented
by a graph constructed from a set of primitive objects found in the image, and relation-
ships between two objects are represented by edges/paths [17]. Then, the images that have
the same features as a given image can be retrieved by comparing the graph structure of
each image in the database against the graph structure of the given image. Another exam-
ple is, in social networks, a community can be modeled by a graph, and the communities
that share the same characteristics can be found by checking whether desired characteristics
represented by graphs exist in the graph representations of the communities [28].

We have a close look at how graph similarity search is used in biochemistry. Chemical
compounds can be well modeled by graphs. In biochemistry and metabolic engineering,
graph similarity search is frequently used to find a family of a known/unknown biochemical
compound. Figure 1 shows an oxidation pathway of a chemical compound called lignans.
By oxidation, a chemical compound X is transformed to X’ by adding/removing organic
atoms. In addition, there are certain places in a chemical compound where these addition
and removal of atoms can take place. For example, in Figure 1, two edges with O can be
added to the middle of compound B to be transformed to compound C. Furthermore, all
chemical compounds in Figure 1 are in the same family, because there is a main chemi-
cal structure that is commonly shared by all these compounds. In this example, it is the
two hexagonal carbon shapes that are found at the end of each compound. Moreover, by
a metabolic process, a chemical compound can be transformed to a compound that is in
a different family. Figure 2 shows a metabolic pathway from phenylalanine to two chem-
ical compounds, flavanone and lignans, each of which is in a different family. Finding a
metabolic pathway is important, because not all chemical compounds are natural products,



World Wide Web

(a) (b) (c)

(d) (e) (f)

Figure 2 Metabolic pathway

i.e., some compounds must be obtained by sequentially biosynthesizing a natural product
with atoms and enzymes. A metabolic pathway documents how next biosynthesized prod-
ucts are derived from a natural product. Conversely, metabolic pathway is also used to find
a precursor of a known/unknown compound. In this metabolic engineering, the following
are frequent queries.

– Q1: Given an unknown chemical compound X, find a list of possible biosynthesized
chemical compounds from: (1) a database of known chemical compounds; or (2)
generate a list of possible chemical compounds not found in the database.

– Q2: Given an unknown chemical compound X, find a list of possible precursors from:
(1) a database of known chemical compounds; or (2) generate a list of possible chemical
compounds not found in the database.

Biochemistry researchers benefit from a system if it automatically searches/generates a
list of possible biosynthesized/precursors of unknown chemical compounds, as it reduces
the number of candidate compounds to validate.

In the above applications, one of the most important operations that these applications
must support is an efficient and effective graph search operation. A traditional graph search
operation that looks for graphs that are structurally the same as a given query graph does not
work well in practice. This is because the connectivity constraints between nodes are too
restrictive in a sense that too few matches are returned. For example, in an image processing
application, it is easy to see that, there may not be many images whose graph structures
are exactly the same as the given image. Another problem is that, graph data in real-world
contain noises that prevent us from performing exact-match graph search operations. To
overcome these problems, the applications need to relax a query graph such that, the graphs
that are similar to the given query graph are retrieved. This is called a graph similarity
search.

There are many previous works in the area of graph similarity search, and they can
be classified into two broad categories. The first category of a graph similarity search is
called a subgraph containment search. That is, given a query graph q , and a graph database
D = {g1, ..., gn}, we return the set of graphs that contain q as a subgraph, i.e., D′ =
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{g | q ⊆ g, g ∈ D}. Checking q ⊆ g for each g ∈ D is difficult since a graph isomorphism
test between q and g must be performed, which is known to be NP-complete [8]. To address
this problem, previous works [3, 4, 22, 24, 31, 34, 36] adopt a filtering-and-verification pro-
cess, where definitely non-matching graphs are discarded, and graph isomorphism tests are
performed on a smaller number of candidate graphs to verify whether q is a subgraph in g.
The second category of a graph similarity search is called a subgraph isomorphism similar-
ity search. Unlike the subgraph containment search, given q , we return the set of graphs,
each of which contains a (maximum) subgraph of q . The similarity between a subgraph
of q and a subgraph of g is measured by a distance function, dist (q, g), and a subgraph
isomorphism similarity search is defined as D′ = {g | dist (q, g) ≤ σ, g ∈ D}. Previ-
ous works [21, 32, 33] define various graph distance measures. In these measures, q and
g are considered similar if the distance between q and g is within a certain threshold, i.e.,
dist (q, g) ≤ σ . Our work belongs to this category, and we propose a meaningful graph
distance measure, and efficient techniques on finding similar graphs.

To measure the distance between q and g, two types of distance measures are proposed in
the literature. The first one is based on a graph edit distance [10]. This measure calculates the
number of edges required to add/remove to transform q to g. However, this measure often
cannot consider how a node is connected to other nodes, i.e., connectivity between nodes.
The second one is based on a maximum common subgraph (MCS) [19, 32] between q and
g, or MCS’s variations. Grafil [32] is based on the MCS-based distance measure, and it is
designed to address the problems occurred from not capturing the global graph structure.
However, there are cases where Grafil still returns less meaningful answers. This is because
some edges in a graph are aggressively relaxed, it looses global structural information. To
address this problem, GrafD-index [21] proposes a more restrictive form of the MCS-based
distance measure based on the maximum connected common subgraph (MCCS). The intu-
ition is to find a largest group of connected nodes in q which is isomorphic to a subgraph
in g, and then compare the size of such a group with the size of q . That way, GrafD-index
returns a list of graphs, each of which contains the biggest isomorphic subgraph between q

and g.
While GrafD-index provides the state-of-the-art graph similarity distance measure, it

may miss some graphs that are similar to q . GrafD-index finds a maximal common con-
nected subgraph (MCCS) of X and Y, and calculates the number of edges that are not
included in X. If the number of missing edges is greater than σ , X is reported as not sim-
ilar. For example, consider the chemical compound B and C shown in Figure 1. MCCS of
B and C is denoted by the subgraph in dotted line in Figure 1. Assume that the number of
edges that can be relaxed is σ = 2. GrafD-index reports B and C are not similar, because
the distance between B and C is |E(B)| − |E(mccs(B,C))| = 23 − 6 = 17 > σ , where
|E(X)| is the number of edges in X and |E(mccs(X,Y ))| is the number of edges in the
MCCS of X and Y. It is, however, clear that compound B and C share the same main chemi-
cal structure, and hence they are related, i.e., C is an oxidation product of B. In fact, the only
difference is, C contains two additional edges, (5, 1) and (1,2). It is interesting to note that,
Grafil reports g1 and g2 as matching graphs, while GrafD-index reports non of the graphs
as matching graphs. Another problem of GrafD-index is that, simply retrieving all graphs
g ∈ D with dist (q, g) ≤ σ can return graphs whose dist (g, q) > σ . This problem arises
from the asymmetric characteristic of the distance measure, i.e., dist (q, g) �= dist (g, q),
unless |E(q)| = |E(g)|. For example, consider the graphs in Figure 3. An MCCS of q2
and g3 is marked by the dotted line. Given σ = 3, GrafD-index reports that q2 is sim-
ilar to g3, as dist (q2, g3) = 5 − 2 = 3 ≤ σ . However, g3 is not similar to q2 as
dist (g3, q2) = 8 − 2 = 6 > σ .
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Figure 3 A query and a data graph, q2 and g3

Although these previous works [21, 32] proposed how to compare two graphs by mean-
ingfully measuring the distance between two graphs, as we discussed above, there are still
problems with these approaches. Motivated by the problems above, in this paper, we pro-
pose a graph similarity distance measure based on the concept of multiple maximal common
subgraphs (MMCS). The motivation behind our approach is that, two graphs are similar if
they share as many structurally similar nodes as possible. A group of nodes in a graph g1

is structurally similar to the nodes in a graph g2 if this group of nodes in g1 are isomorphic
to some nodes in g2. When measuring commonality between two graphs, MMCS-based
approach considers multiple groups of structurally similar nodes that are commonly found
between two graphs. In addition, we take into account how these groups of nodes are con-
nected, how many edges are miss-matched in q , as well as by how many edges, in total,
these groups of nodes are separated. For example, given q1, g1, σ = 2, and a distance relax-
ation parameter k = 2, our similarity distance measure reports g1 as q1’s similar graph. This
is because there exists two groups of structurally similar nodes, namely B’ and C’ (note:
these are the carbon hexagons at the two ends), and although these two groups of nodes are
separated, they are not separated by too far. the path between these two groups of nodes
can be relaxed in a way that k edges can be added/removed to connect these two groups of
nodes. In this example, the path between the two nodes are the same except two edges (5,1)
and (1,2) are added. The maximum number of additional edges that connect B’ and C’ are
specified by k. Note that, while in this example, the two additional edges do not change the
path between the two groups of nodes, the path could also be changed by addition/removal
of edges up to k. This way, our distance measure allows us to report two graphs as simi-
lar if two graphs contain as many similarly structured nodes as possible, and the groups of
these nodes are separated by not too many edges, i.e., the edge connectivities between these
groups of similarly structured nodes are also similar. This distance measure also means that
two graphs will contain a small number of non-matching edges, but not all graphs that are
reported as similar by previous distance measures, such as graph edit distance, are included,
as we also consider the overall graph structures. Furthermore, our approach allows us to
discard ambiguous matching graphs such as g3 for q2 by checking dist (q, g) ≤ σ and
dist (g, q) ≤ σ . Hence, if the number of non-matching edges between g1 and g2 is ≤ σ ,
then the number of non-matching edges between g2 and g1 must also be ≤ σ to report g1
as similar to g2.

In this paper, we devise a technique that can efficiently perform MMCS-based graph
similarity search. We investigate relationships between a query q , a data graph g, and a set
of subgraphs Fg that are commonly contained by q and g, and formally establish the lower
and upper bounds on the distance between q and g by measuring the distances between q

and Fg , and Fg and g. Based on these lower and upper bounds, we develop filtering and
validation rules that allow us to discard and retrieve non-matching and definitely-matching
data graphs, respectively, without running verification algorithm. We then develop a verifi-
cation algorithm that efficiently verify similarity conditions by utilizing node connectivity
and avoiding duplicate computation while g is traversed. Finally, an index structure, called
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feature-index, is proposed to index groups of data graphs according to the distances from
sets of frequent subgraphs discovered over a graph database. This feature-index is used to
efficiently perform filtering and validation rules.

The contributions of this paper are summarized as follows.

– We propose a graph similarity search based on the concept of MMCS. By considering
multiple common subgraphs between q and g, we can effectively retrieve previ-
ously undiscovered similar graphs, and yet discard dissimilar graphs reported by many
previous works.

– We formally establish relationships between q , g, and Fg, and establish lower and upper
bounds on the distance between q and g. Based on these bounds, we propose filter-
ing and validation rules to identify non-matching and definitely-matching data graphs.
Then, we propose an efficient MMCS-based verification algorithm that verifies whether
q and g satisfy the similarity condition. Lastly, we propose a feature-index to efficiently
perform our filtering and validation rules.

– Extensive experimental studies are conducted to evaluate the efficiency and effective-
ness of our filtering and validation rules, and verification algorithm.

Organization Section 2 presents related works in the area of graph similarity search.
Section 3 formally defines the problem. A series of filtering and validation rules are
proposed in Section 4. Section 5 devises a verification algorithm. Section 6 proposes a
feature-index to process graph similarity search efficiently. Section 7 presents the over-
all graph similarity search framework. Section 8 presents experimental results, and we
conclude the paper in Section 9.

2 Related work

We classify existing graph (similarity) search techniques into several categories according
to their characteristics.

The first group of techniques calculate a common subgraph that exists between two
graphs by calculating a maximum clique. Raymond et al. [19] calculate the graph similarity
distance by finding a maximum common edge subgraph (MCES), and an MCES is found by
finding a maximum clique on a modular product of the line graphs created from two graphs
to compare. Raymond & Willett [20] reviewed MCS/MCES algorithms that are based on
finding maximum cliques. Koch [15] adapts Bron & Kerbosch [1] algorithm to find all
maximal cliques for various types of datasets. Cuissart & Hebrard [5] improve Koch’s [15]
algorithm by avoiding creating a compatibility graph from two graphs. Their algorithm cre-
ates a tree structure for a graph, and performs a matching process while it traverses the tree.
As finding cliques involves much more computation than required by graph search, these
works are not suitable.

The second group of techniques perform a graph similarity search by finding all graphs
in a graph database that contains a query graph as a subgraph, i.e., subgraph containment
query, q ⊆ g. GraphGrep [24] is a path-based technique in a way that, it enumerates all
existing paths in the graphs in a graph database up to a maximum length, and each graph is
indexed with the paths found in the graph. The index size, however, increases dramatically
as the size of indexed path set increases. gIndex [31] introduces the concept of discrimi-
native features, and creates an index based on frequent and discriminative subgraphs. The
graphs that contain all the frequent features found in a query graph are first found, and
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then subgraph isomorphism tests are run to verify these graphs. TreePi [34] uses frequent
and discriminative subtrees as indexing features to simplify index processing compared to
when processing graph-based features. Tree+� [36] uses frequent tree-features and discrim-
inative subgraphs as indexing features, and FG-index [3, 4] uses frequent subgraphs and
edges as indexing features. QuickSI [22] proposes a fast subgraph isomorphism verifica-
tion algorithm by improving Ullmann’s [26] subgraph isomorphism algorithm to preserve
the node connectivity constraints during the candidate node matching phase, and presents
a feature-based index to support subgraph containment queries. Since all techniques in this
group process subgraph containment queries, they are not suitable for answering subgraph
similarity search queries.

The third group of techniques support graph similarity search by using graph edit dis-
tance. Similarity search is supported by finding a subgraph or a set of subgraphs that
commonly exist between two graphs. Closure-Tree [10] creates a generalized graph to rep-
resent a set of graphs by combining (i.e., union) graphs that share many common vertices
and edges. These graphs are then organized in a tree similar to the tree structures used to pro-
cess spatial queries (e.g., R-trees). When a similarity search is performed, approximate edit
distance is calculated. GDIndex [29] decomposes a graph into a set of subgraphs, and these
subgraphs are represented by a DAG structure. Similarity search is performed by finding
the common subgraph that gives the minimum distance between a query and the subgraph.
SIGMA [18] checks whether a graph g can be covered by all the features that a graph q

contains, and by examining missing features, it calculates the number of edges to delete.
SEGOS [27] split graphs into smaller units and indexes the graph with a two-level inverted
index, and compare these sets of units to calculate the distance between two graphs. Since
the above works use an (approximate) graph edit distance to measure the distance between
two graphs, less meaningful graphs are also returned when similarity search is performed.

The fourth group of techniques support a graph similarity search by relaxing edges in a
query graph, and they are the most related to our work. Grafil [32] builds a feature graph
matrix, which stores the number of subgraph isomorphic mappings for each frequent fea-
ture found in the data graphs, and an edge feature matrix is built on the query graph to
calculate the number of edges that can be mapped to each frequent feature. Using this
edge feature matrix, the maximum number of matching features when σ edges from the
query are removed, is calculated. Then, the graphs that misses up to d number of features
become candidate graphs. GrafD-index [21] proposes a more meaningful graph similarity
search distance measure based on the concept of a maximum common connected sub-
graph (MCCS), and presents effective pruning and validation rules based on the triangular
inequality relationship between a query, feature, and a data graph. While GrafD-index is the
state-of-the-art technique, as explained earlier, there are undiscovered graphs that are similar
to query graphs, and dissimilar graphs are also returned. Fan et al. [7] propose approximate
graph similarity search algorithms based on the idea of matching an edge to a path. Unlike
Grafil and GrafD-index, two graphs are reported as similar if the root-to-leaf paths in one
graph is similar to the root-to-leaf paths in another graph. However, since this approach is
path-based, it is difficult to capture global structural information. PRAGUE [13] is a recent
work that uses a MCCS-based distance measure. It focuses on how to interactively query
similar graphs using graphical user interface.

Lastly, there are some works that do not fall into the above categories. cIndex [2] and
Shang et al. [23] perform supergraph containment queries, i.e., q ⊇ g. GString [12] is
designed for finding similar chemical compounds. Zeng et al. [33] propose an approxi-
mate graph similarity search. Tong et al. [25] find subgraphs in a large graph that match a
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user query pattern. Gaddi [35] indexes a large graph with frequent substructures, and finds
all subgraphs that are isomorphic to q . Khan et al. [14] find top-k approximate matches
in a large graph. Fan et al. [6] provide incremental graph pattern matching algorithm for
dynamic graphs. Turbo [9] proposes a subgraph isomorphism algorithm for graph contain-
ment queries. It identifies candidate regions in g where the regions may contain q , and
performs subgraph isomorphism search in the order obtained from a BFS tree from q .
Zhu et al. [37] proposes an approximate graph matching algorithm for finding a common
subgraph between two large graphs. The quality of the common subgraph is evaluated by a
scoring function, which counts the number of edges of the common subgraph. Finding the
optimal common subgraph is the same as finding a maximum common subgraph between
the two graphs. Finally, Lee et al. [16] empirically compared the performance of recent
subgraph isomorphism algorithms, and reports that graph searching order hugely affects
the number of candidate sets, which impacts the overall performance. Since all the above
works are designed to answer other types of graph search problems (i.e., graph containment
queries, approximate graph queries, etc), it is difficult to extend them for graph similarity
search.

3 Problem statement

In this paper, a graph similarity search is performed on undirected graphs with labeled
vertices. Let us represent an undirected graph G = (V,E, λ), where V is the set of vertices,
E ⊆ V × V is the set of edges, and λ : V → W is a vertex labeling function, where W is a
finite set of labels. The label of a vertex v is denoted as λ(v). Let us denote the set of vertices
and edges of a graph g by V (g) and E(g), respectively. Also, the number of vertices and
edges in g are denoted as |V (g)| and |E(g)|, respectively. Furthermore, a path, 〈v1, ..., vn〉
where (vi, vi+1) ∈ E(g) for 1 ≤ i < n, in a graph is denoted as v1 � vn, and the length of
a path, |v1 � vn|, is defined as the number of edges in the path.

Definition 1 (Subgraph isomorphism) Given two graphs g′ and g, g′ is a subgraph of g
if there exists an injective function f : V (g′) → V (g) that satisfies the following con-
ditions: (1) ∀v ∈ V (g′), f (v) ∈ V (g) such that λ′(v) = λ(f (v)); and (2) ∀(u, v) ∈
E(g′), (f (u), f (v)) ∈ E(g).

There may exists multiple injective functions between two graphs. Given two graphs g′
and g, if there exists an injective function f , let us represent the relationship between g′ and
g as g′ ⊆f g, and denote g′ as a subgraph of g, and g as a supergraph of g′. Moreover, let
us omit the injective function f to simplify g′ ⊆f g to g′ ⊆ g when the context is clear.

Definition 2 (Maximal common subgraph) Given two graphs g1 and g2, a subgraph g′1 ⊆
g1 is a maximal common subgraph (MCS′) of g1 and g2, if g′1 is subgraph isomorphic to g2,
and g′1 �⊂ g′′1 , where g′′1 is a supergraph of g′1 that is subgraph isomorphic to g2. MCS′ of g1

and g2 is denoted as mcs ′(g1, g2).

Definition 3 (Spath) Given g1, g2, (u, v) ∈ E(g1), and subgraph isomorphism functions
f1 : V (g1) → V (g2) and f2 : V (g1) → V (g2), a path f1(u) � f2(v) in g2 is a spath of
the edge (u, v) ∈ E(g1), if λ1(u) = λ2(f1(u)) and λ1(v) = λ2(f2(v)). The length of an
spath is the number of edges between f1(u) and f2(v).
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Figure 4 A query graph, q1

Definition 4 (Multiple maximal common subgraphs) Given g1, g2, a set of subgraph iso-
morphism functions, fi : V (g1) → V (g2), and a distance relaxation r , multiple maximal
common subgraphs (MMCS) of g1 and g2, denoted as mmcs(g1, g2), is a set of MCS′s of g1
and g2, i.e., mmcs(g1, g2) = ⋃n

i=1{mcsi(g1, g2)}, that satisfies the following conditions:
(1)

⋂n
i=1 E(mcs ′i (g1, g2)) = ∅; and (2) the maximum length of each spath that connects

mcsi(g1, g2) and mcsj (g1, g2) is ≤ r , where 1 ≤ i, j ≤ n and i �= j .

Example 1 Consider q1 and g1 shown in Figures 4 and 5, respectively. Given r = 2, q ′1 and
q ′′1 are mmcs(q1, g1), since the matching MCS′ of q ′1 and q ′′1 , namely g′1 and g′′1 , are con-
nected by a path 〈D,G,E〉, which is (D,E) ∈ E(q1)’s spath, and the length of this spath
is 2. Let us consider q1 and g2 in Figures 4 and 5, respectively. Given r = 2, mmcs(q1, g1)

is either g′2 or g′′2 , as the length of (D,E)’s spath, 〈D,G,E〉, in g2 is > 2.

Definition 3 and 4 establish the properties of common subgraphs between two graphs.
Having defined MMCS, our graph similarity distance measure is defined as follows.

Definition 5 (Graph similarity distance measure) Given two graphs g1 and g2, the distance
between g1 and g2 is defined as:

dist (g1, g2) = |E(g1)| − |E(mmcs(g1, g2))| (1)

dist (g2, g1) = |E(g2)| − |E(g1)| + dist (g1, g2) (2)

where E(mmcs(g1, g2)) = ⋃n
i=1 E(mcs ′i(g1, g2)).

The distance measure is not symmetric in a sense that, dist (g1, g2) is not always
the same as dist (g2, g1). Given dist (g1, g2), dist (g2, g1) is defined as dist (g2, g1) =
|E(g2)| − |E(mmcs(g1, g2))|, and dist (g2, g1) can be rewritten in terms of dist (g1, g2),
and this is shown in (2).

Lastly, MMCS-based graph similarity search is defined as follows.

Definition 6 (MMCS-based graph similarity search) Given a query graph q , a set of
graphs D = {g1, ..., gn}, an edge relaxation σ and a distance relaxation k, a MMCS-based

Figure 5 Data graphs, g1 and g2
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graph similarity search is to find the subset of graphs D′ = {g | g ∈ D, dist (q, g) ≤
σ, dist (g, q) ≤ σ, and the total lengths of all spaths are ≤ k}.

An edge relaxation σ specifies the number of edges that may be missed in q when
MMCS-based graph similarity search is performed. A distance relaxation k specifies the
total number of edges in g that are used to separate MCSs in g. The value of k is determined
by k = α|E(q)| − |E(q)|, where α ≥ 1, to decide the number of edges in g to use to relax
non-matching edges in q , e.g., if the size of a matching graph in g can be up to 40 % larger
than the size of q by including the spaths in g, then k = 1.4 × 10 − 10 = 4. Definition 6
shows that two graphs are similar if the size of two graphs to compare are not too much
different. The difference in size is controlled by σ and k.

Example 2 Consider q1 and g1 shown in Figures 4 and 5, respectively, and let σ = 2 and
k = 2. q1 and g1 are similar, as dist (q1, g1) = 9 − 8 = 1 ≤ σ , dist (g1, q1) = 10 − 8 =
2 ≤ σ , and |D � E| ≤ k. In addition, q1 and g2 are not similar, as dist (q1, g2) =
9 − 4 = 5 > σ and |D � E| > k. Lastly, given σ = 3, q2 and g3 are not similar, as
dist (q2, g3) = 5 − 2 ≤ σ , but dist (g3, q2) = 8 − 2 > σ .

In biochemistry and metabolic engineering, the distance between two components is
important, as two compounds, each with different lengths between two components could
represent two very different chemical compounds. Furthermore, we also need to consider
the overall structure of chemical compound by considering how components in a chemical
compound are nearby. To restrict how far each component can be separated overall, summa-
tion of spaths are used. However, there are certain applications that measuring the minimum
distance between MCS is useful. Further investigation on considering the use of minimal
distance is left as future work.

Problem statement In this paper, given a query graph and a set of graphs, we propose a
technique that can efficiently perform MMCS-based subgraph similarity search.

4 Measuring graph similarity

In this section, we present how maximum and minimum distances between a query q and a
data graph g ∈ D can be defined by calculating the distances between q and feature graphs,
and g and feature graphs. Then, filtering and validation rules are established to remove
non-matching and identify definitely-matching graphs, respectively.

4.1 Estimating graph similarity distance

Definition 7 (Feature graph) Given a graph database D = {g1, ..., gn}, let Df = {g | g ∈
D, f ⊆ g}. A subgraph f is a feature graph in D if |Df |

|D| ≥ k, where k is a feature selection
factor whose range is 0 ≤ k ≤ 1.

Definition 8 (Maximum common subgraph) A maximum common subgraph (MCS) of g1
and g2 is a largest mcs ′(g1, g2), and is denoted as mcs(g1, g2).

Let Fg = {f1, ..., fn} be a set of feature graphs contained by g, i.e., ∀f ∈ Fg, f ⊆ g, and
E(Fg) be a set of edges from all feature graphs in Fg . The maximum common subgraphs
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Figure 6 A relationship
between q, g and Fg

between g and Fg is defined as mcs(g,Fg) = ⋃|Fg |
i=1 mcs(g, fi). Theorem 1 establishes the

bounds on the maximum and minimum distances between q and g.

Theorem 1 Given a query graph q , a data graph g ∈ D, and a set of feature graphs Fg ,
the distance between q and g is bounded by |E(α)|− |E(β)| ≤ dist (q, g) ≤ |E(α)|, where
α = E(q) \ E(mcs(q,Fg)), β = E(g) \ E(mcs(g,Fg)).

Proof We establish a relationship between q and g as follows. There may exist subgraph
isomorphism mappings between α and β . dist (q, g) is minimum, if all edges in α are sub-
graph isomorphic to some edges in β , and dist (q, g) is maximum, if non of the edges in α

are subgraph isomorphic to the edges in β . Hence, the minimum set of non-matching edges
in q are bounded by α \ β , and the maximum set of non-matching edges in q are bounded
by α. Therefore, min(dist (q, g)) = |E(α \β)| = |E(α)|−|E(β)|, and max(dist (q,g)) =
|E(α)|, and they can be rewritten as |E(α)| − |E(β)| ≤ dist (q, g) ≤ |E(α)|.

Example 3 Figure 6 shows a relationship between q , g and Fg . Fg contains two feature
graphs, {f1, f2}. E(mcs(g,Fg)) is represented by E(f ′

1)∪E(f ′
2) in g, and β represents the

edges in E(g) \E(mcs(g,Fg)). E(mcs(q,Fg)) is represented by E(f ′′
1 )∪E(f ′′

2 ) in q , and
α represents the edges in E(q) \ E(mcs(q,Fg)). dist (q, g) is minimum when all edges in
β has matching edges in α, i.e., there are |E(α)| − |E(β)| non-matching edges in q , and
dist (q, g) is maximum when non of the edges in β has matching edges in α, i.e., there are
|E(α)| non-matching edges in q .

The size of α and β are also affected by the number of common edges between the feature

graphs in Fg . Since mcs(g,Fg) = ⋃|Fg |
i=1 mcs(g, fi), the size of β becomes minimum when

there are no common edges between feature graphs, i.e., |E(
⋃|Fg |

i=1 fi)| =
∑|Fg |

i=1 |E(fi)|.
Similarly, the size of β becomes maximum when the feature graphs contain the edges that

are also found in other feature graphs, i.e., fk = ⋃|Fg |
i=1 fi , where fk is a biggest feature

graph in Fg . Consequently, the size of α is increased (resp. decreased) when the size of
β increases (resp. decreases), as the common edges between q and g are decreased (resp.
increased).
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4.2 Filtering and validation rules

Having established the upper and lower bounds on the distance between q and g, we now
derive filtering and validation rules (FR and VR, respectively) based on Theorem 1. Given
D, FR and VR are used to discard non-matching and retrieve definitely-matching graphs in
D, respectively. Given an edge relaxation σ , FR and VR are defined as follows.

Filtering Rule 1: dist (q, g) > σ , if ∃f ∈ Fg such that, |E(f )| − |E(mcs(f, q))| > σ .

Proof The number of non-matching edges in a feature graph is already greater than σ .

Filtering Rule 2: dist (q, g) > σ if γ > σ , where γ = E(
⋃|Fg |

i=1 fi) \
E(

⋃|Fg |
i=1 mcs(fi, q)).

Proof Note that, ∀f ∈ Fg, f ⊆ g, but mcs(f, q) ⊆ f . This is because there may exist ed-
ges in f that are missing inmcs(f, q). Since all feature graphs in Fg are isomorphic to g, and
the total number of non-matching edges in q are already greater than σ , dist (q, g) > σ .

Filtering Rule 3: dist (q, g) > σ if |E(α)| − |E(β)| > σ .

Proof dist (q, g) is lower bounded by |E(α)| − |E(β)|. Hence, if |E(α)| − |E(β)| > σ ,
dist (q, g) > σ .

Validation Rule: dist (q, g) ≤ σ if |E(α)| ≤ σ , and the length of spaths are ≤ k.

Proof dist (q, g) is upper bounded by |E(α)|. Hence, if |E(α)| ≤ σ and length of spaths
are ≤ k, dist (q, g) ≤ σ .

Applying similar ideas from FR 3 and VR, additional rules can be derived for checking
dist (g, q) ≤ σ . In the following rules, E(mcs(g,Fg))\E(mcs(q,Fg)) represents the edges
in g that do not have matching edges in q .

Filtering Rule 3′: dist (g, q) > σ if |E(mcs(g,Fg))| − |E(mcs(q,Fg))|+ |E(β)| −
|E(α)| > σ

Validation Rule′: dist (g, q) ≤ σ if |E(mcs(g,Fg))| − |E(mcs(q,Fg))| + |E(β)| ≤ σ

Proof |E(β)|−|E(α)| represents the minimum number of non-matching edges in g. Hence,
if |E(mcs(g,Fg))|− |E(mcs(q,Fg))|+ |E(β)|− |E(α)|> σ , dist (g, q) > σ . Also, E(β)

are the edges with unknown matching status. But if |E(mcs(g,Fg))| − |E(mcs(q,Fg))| +
|E(β)| ≤ σ , dist (g, q) ≤ σ , regardless of the matching status.

Note that, additional rules for FR 1 and 2 are not needed for checking dist (g, q) ≤ σ ,
because all feature graphs in Fg are already isomorphic to g.

5 Verification algorithm

In this section, we present a subgraph isomorphism verification algorithm that verifies
whether subgraphs in g1 are subgraph-isomorphic to subgraphs in g2. Our algorithm extends
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QuickSI [22] and Shang et al. [21] to find non-intersecting multiple maximal common sub-
graphs of g1 and g2 in order to calculate dist (g1, g2) ≤ σ . The difference between our
algorithm and previous works is that, we continue to explore g2 to find a set of MCS′s of g1

and g2 that gives us dist (q, g) ≤ σ . To reduce the number of node probings, we utilize the
node connectivity when exploring nearby nodes.

Enumerating all possible common subgraphs that exist between q and g in order to find
MCS′s is inefficient. To solve this problem, let us first represent a graph by a set of smaller
subgraphs of g. Given a graph g, let g = {g′1, ..., g′n}∪δ, where g′i ⊆ g, and V (g′i )∩V (g′j ) =
∅ and E(g′i )∩E(g′j ) = ∅ for all i, j ≤ n, i �= j . In this case, δ represent the set of edges that
connect two subgraphs. Let t (g′) be a spanning tree of g′ in g, and T (g) = {t (g′1), ..., t (g′n)}
be a set of spanning trees of the subgraphs in g. In t (g′), there are two types of edges,
namely a forward and a backward edge. Let Ef (t (g

′)) and Eb(t (g
′)) be a set of forward

and backward edges in t (g′), respectively. We can then express the set of edges in g in terms
of t (g′).

E(g) =
|T (g)|⋃

i=1

(Ef (t (g
′
i )) ∪ Eb(t (g

′
i ))) ∪ E(δ) (3)

The problem of finding a set of subgraphs in g is converted to finding a set of spanning
trees with backward edges in g. The advantage of having a set of subtrees is that, it gives us
a systematic graph traversal order in g, and also allows us to reduce the node search space,
as only the nodes that satisfy node connectivity constraints are considered.

Similar to the previous works [21, 22], we first generate a spanning tree of q , denoted
as t (q), and then we generate a node traversal order, called a tree-sequence, denoted as
ts(q), which tells us the node traversal order in g. An initial tree-sequence is obtained by
traversing t (q) in pre-order, and this tree-sequence is subsequently modified as node match-
ing process progresses. Figure 7 shows examples of tree-sequences of q , and ts1(q) is an
example of the initial tree-sequence of q . The dotted line in ts1(q) represents a backward
edge. After a tree-sequence is generated, g is traversed by following ts(q). While g is tra-
versed, ts(q) is modified such that, when a non-matching node in ts(q) is found, the edge
that connects the non-matching node is removed from ts(q). After the edge is removed, one
of the backward edges that connects the non-matching node becomes a forward edge, and
a part of ts(q) is restructured such that, the node that has the new incoming forward edge
becomes the next node to process in ts(q), and ts(q) is updated accordingly by performing
a preorder traversal on the nodes in ts(q) that have not yet visited. For example, in Figure 7,
ts2(q) is an example of a newly generated sequence from ts1(q), when (B,C) is found to
be non-matching edge. To generate ts2(q), (B,C) in ts1(q) is removed, (B,D) in ts1(q)

becomes a forward edge, and the order of C, D, E, and F is modified such that, D becomes
the next node to process, as D has the newly generated forward edge. At some point, remov-
ing edges eventually split ts(q), creating two disconnected sub tree-sequences, ts ′(q) and
ts ′′(q). For example, in Figure 7, removing (B,D) in ts2(q) makes ts2(q) split, and ts3(q)

is the split tree-sequence of ts2(q). In this case, not-yet-traversed sub tree-sequence, ts ′′(q),
is traversed, if the length of a spath between the last node in ts ′1(q) and the first node in
ts ′′2 (q) is ≤ k. Continuing to traverse g according to the order specified in ts(q) generates a
set of MCS′s of q and g.

Algorithm 1 and 2 describe our graph verification procedure. The idea of Algorithm 1 is
to find a starting node in g that will lead to the set of subgraphs that satisfies σ and k.

Lines 1–5: Given q , q’s spanning trees with different roots are generated, and a tree-
sequence for each spanning tree is generated by traversing t (q) in preorder.
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Then, each node v ∈ g that has the same label as the first node in ts(q)

becomes the first candidate matching node. Algorithm 2 is executed on g to
match the remaining edges in ts(q).

Lines 6–9: If a set of matching subgraphs cannot be found, q is relaxed by removing an
edge from q , and the above procedure is recursively invoked to find matching
MCS′s.

Algorithm 1: Verification(q ,g,σ ,k)
input : q: query graph; g: graph; σ : edge relaxation;

k: maximum lengths of spaths
output : boolean

1 foreach ts(q) ∈ genSequences(genSpanningT rees(q)) do
2 foreach v ∈ V (g) do
3 if λ(ts(q)[0]) = λ(v) then
4 if V erif icationSub(ts(q), q, g, σ, 0, 1) then
5 return true;

6 if σ ≥ 0 then
7 foreach q′ ∈ q.removeEdge() do
8 if V erif ication(q′ , g, σ − 1, k) then
9 return true;

10 return false;

Algorithm 2 is recursively executed until the number of non-matching edges is ≤ σ , or
the current tree-sequence cannot be matched anymore.

Lines 1–4: We return true, if the number of non-matching edges is ≤ σ , and false if
the current tree-sequence does not lead to matching nodes that satisfy σ .

Lines 5–10: This part checks whether there exists a node that matches the current node
in the tree-sequence, denoted as ts(q)[i]. Given ts(q)[i], candidates()
generates a set of candidate nodes in g whose labels are the same as
ts(q)[i]. To reduce the number of candidate nodes for ts(q)[i], we first
find ts(q)[i − 1]’s matching node u in g, and get u’s neighbouring nodes
whose labels are the same as ts(q)[i] and not-yet-previously matched. Fur-
thermore, these candidate nodes are further reduced by testing them against
a set of rules that define relationship between nodes. For example, in bio-
chemistry, there exists a set of chemical reaction rules that show what type
of atoms can participate in a chemical reaction. Additional filtering takes
place in present of these rules. Then, we calculate the number of forward
and backward edges that can be matched when u is matched, and calculate
the number of missing edges so far. If the number of missing edges is ≤ σ ,
we update the set of matching edges, and Algorithm 2 is called.

Lines 11–15: This part of code is executed when lines 5–10 cannot find ts(q)[i]’s match-
ing node in g. In this case, removeEdge() modifies ts(q) such that, the edge
between ts(q)[i − 1] and ts(q)[i] is removed, and checks whether there
exists a path between ts(q)[i − 1] and ts(q)[i]. If there exists such a path,
one of the nodes on the path contains a backward edge. The backward edge
on the path is converted to a forward edge, and the sub-spanning tree start-
ing from ts(q)[i] is restructured such that, the node that had the backward
edge is positioned to ts(q)[i]. Then, the tree-sequence is updated according
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Algorithm 2: VerificationSub(ts(q), q, g, σ, k, i)
input : ts(q): tree-sequence of q; q: query; g: graph; σ : edge relaxation; i: index number

of the node in ts(q) to process; R: rules to define valid node-to-node relationships
output : boolean
require : M: a set of matching edges; u: previously matched vertex in g

1 if |E(q)| − |M| ≤ σ then
2 return true;

3 else if pos ≥ |ts(q)| then
4 return false;

5 foreach v ∈ candidates(ts(q)[i], g, R) do
6 if (μ = |E(q)| − ckMatchingEdges(M, v, k)) ≤ σ then
7 updateMatchingEdges(M ∪ {v});
8 if V erif icationSub(ts(q), q, g, σ − μ, k, i + 1) then
9 return true;

10 updateMatchingEdges(M − {v});
/* remove an edge */

11 if 1 > σ and i ≥ 2 then
12 (ts(q)′, ts(q)d ) = ts(q).removeEdge();
13 if |ts(q)′ | > i then
14 if V erif icationSub(ts(q)′ , q, g, σ − 1, k, i) then
15 return true;

/* traverse the disconnected subtree */
16 if seqd �= ∅ then
17 foreach c ∈ candidatesK(ts(q)[i], g, k, R) do
18 if V erif icationSub(ts(q)d , q, g, σ, k, 0) then
19 return true;

20 return false;

to the preorder traversal of the restructured sub-spanning tree. The updated
tree-sequence is then traversed by calling Algorithm 2.

Lines 16–19: This part of code is executed if lines 11–15 generate a disconnected sub
tree-sequence when an edge is removed. In this case, candidatesK() gen-
erates a set of not-yet-matched nodes in g that are at most k distance away
from ts(q)[i−1]’s matching node in g, and have the same label as ts(q)[i].
This set of candidate nodes are then sorted by distance, and each node is
traversed by calling Algorithm 2.

Example 4 Given σ = 2 and k = 2, Figure 7 shows how q can be verified against g. A
tree-sequence of q , ts1(q), is generated by traversing q in preorder. The dotted line in ts1(q)

represents a backward edge. Then, g is traversed by following the node order represented by
ts1(q). The first two nodes, A and B , in ts1(q) are matched, as (A,B) ∈ E(g), but C cannot
be matched, as (B,C) �∈ E(g). In this case, the edge (B,C) in ts1(q) is first removed, then
(B,D) in ts1(q) is converted to a forward edge, and finally, the sub tree-sequence having
C,D,E and F are restructured to give a new sub-sequence. This restructured sub-sequence
starts with D, as the edge (B,D) in ts1(q), i.e., the backward edge that connects D, is
converted to a forward edge. The newly generated sequence is shown as ts2(q). We now
check whether D in ts2(q) can be matched, but it fails as (B,D) �∈ E(g). Therefore, the
edge (B,D) in ts2(q) is removed. This time, the removal of the edge causes ts2(q) split
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Figure 7 q, g, and tree-sequences of q

into two sequences. A newly generated sequence is shown as ts3(q), and ts3(q) has two sub
sequences, ts ′3(q) and ts ′′3 (q). B in ts ′3(q) is the previously matching node, and it is matched
with B ∈ V (g). Also, note that ts ′′3 (q) starts with D. We now check whether there exists a
node D ∈ V (g) that is at most k = 2 edges away from B ∈ V (g). D ∈ V (g) is reachable
from B ∈ V (g), and it is 2 edges away. Now, D ∈ V (g) becomes a candidate node, and it
is matched with D in ts ′′3 (q). We now check whether ts ′′3 (q) can be matched. C in ts ′′3 (q)
can be matched with C ∈ V (g), as (C,D) ∈ E(g). E in ts ′′3 (q) can also be matched as
(D,E) ∈ E(g). Similarly, F in ts ′′3 (q) is matched, as (E,F ) ∈ E(g). At this stage, (B,C)

and (B,D) in q are the only non-matching edges, i.e., σ = 2, and (B,D) in q is matched
with a path 〈B,E,D〉 in g, i.e., k = 2. Hence, g is reported as a matching graph of q

Cost Analysis Given q and g, we analyze the total number of node comparisons made while
verifying isomorphism mappings between q and g. Since we traverse g in a depth-first-
search manner, the degree of a node in g reflects the number of possible paths to choose
from to go 1 level deeper. At each node in a tree-sequence ts(q), we check for matching
nodes in g by following forward and backward edges. The total cost c is given as follows.

c ≤ |V (g)| · dmax(g)
|V (g)| · dmax(ts(q))

where dmax(g) is the maximum degree of a node in g, dmax(ts(q)) is the maximum number
of forward and backward edges in a node in ts(q). The space usage for our verification
algorithm is O(|ts(q)| + |g|), where |g| is the space required to store g.

6 Feature-index

In this section, we describe a feature-index that is used to process MMCS-based graph
similarity search queries efficiently.

Definition 9 (Feature-index) Let FD = {f1, ..., fn} be a set of feature graphs generated
from the graphs in a graph database D, and let FG ⊆ FD . Given FG, let G = {g | g ∈
D and ∀f ∈ FG, f ⊆ g}. A feature-index F is F = ⋃n

i=1{(FGi
, (d,Gi))}, where d =

dist (Gi, FGi
) and D = ⋃n

i=1{Gi}.

Figure 8 shows an example of a feature-index. A feature-index F is a set of tuples of
the form (FG,G), where FG and G are a set of feature and data graphs, respectively, such
that, each data graph in G contains all the feature graphs in FG. A feature-index provides
a way of grouping data graphs in D that contain the same feature graphs. The main idea
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Figure 8 A feature-index

behind using a feature-index is that, we evaluate groups of data graphs to share the costs of
subgraph isomorphism tests amongst the graphs that contain the same set of feature graphs.
Similarity between data graphs are measured by feature-based closeness distance measure.

Definition 10 (Feature closeness) Given two graphs, g1, g2 ∈ D, and FD , the closeness
between g1 and g2 is calculated as:

closeness(g1, g2) = f (g1) · f (g2) =
|FD |∑

i=1

f (g1)[i] × f (g2)[i] (4)

where f (g) is a vector of feature graphs found in g, and f (g)[i] is the value of ith feature
in FD , which is 1 if f (g)[i] ⊆ g, and 0 otherwise.

The closeness score is proportional to the number of feature graphs that are commonly
found between g1 and g2. It is, however, difficult to make feature and data graph tuples
in a way that, the number of feature graphs that each group of data graphs contains are
maximized while reducing the total number of feature and data graph tuples in F . A similar
problem is shown to be NP-complete [32]. To solve this problem, we create groups of feature
and data graph tuples empirically. Algorithm 3 describes the procedure.

Graphs that have similar set of features are grouped by merging the graphs iteratively.
Graphs are initially stored in a list. We choose the first graph, g1 (Line 4), and for each
graph gi in the list, we calculate the closeness score between g1 and gi (Line 6). Then, g1

and gi that have the highest closeness score are merged to form a group (Line 7). Once two
graphs are merged, the vector of feature graphs are updated by calculating the dot product

Algorithm 3: GenerateGraphGroups(D,FD)
input : D: data graphs; FD : feature graphs
output : D′: a set of (Fg,G)

1 D′ = generate a (FG,G) tuple for each g ∈ D, where F = Df and G = {g};
2 D′′ = insert D′ to a list;
3 while |D′′| ≥ 0 do
4 remove the first tuple, (Fg1,G1), from D′′;
5 foreach (FG,G) ∈ D′ do
6 if (FG,G) is the closest to (F1,G1) then
7 update G by adding graphs in G1;
8 update the vector of features Fg by intersecting with F1;

9 return D′;
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Algorithm 4: GenerateFeatureIndex(D, FD, n)
input : D: data graphs; FD : Feature graphs; n: number of graph groups to generate
output : F : a feature-index

1 F = {}; D′ = GenerateGraphGroups(D, n);
2 foreach (FG,G) ∈ D′ do
3 G′ = {};
4 foreach g ∈ G do
5 M = {};
6 foreach f ∈ F do
7 perform an isomorphism test between f and g to find matching edges in g;
8 M = M ∪ {the matching edges in g};
9 d = |E(g)| − |M|;

10 G′ = G′ ∪ {(d, g)};
11 sort G′ according to distance F = F ∪ {(FG,G

′)};
12 return F ;

of two vectors of feature graphs (Line 8). This vector of feature graphs are then used to
calculate the closeness score in the following iterations. Lastly, the above merging process
is repeated until all groups of graphs are merged.

Next, a feature-index is generated using these groups. Algorithm 4 describes the proce-
dure. For each tuple (FG,G), we extract the set of common feature graphs, FG (Line 2).
This set of feature graphs represent the group of graphs, G. Next, for each graph g in G, we
calculate the distance between g and each feature graph in FG, and the union of all matching
edges are calculated (Lines 4–8). Then, the number of edges in g that are not in the union
of matching edges are calculated, and we set this number as the distance between g and FG

(Lines 9–11). Lastly, the graphs in the group are sorted according to the distance from FG

(Line 11).

Example 5 Figure 8 shows an example of a feature-index. In this example, two feature
graphs, {f1, f2}, are isomorphic to each data graph in G = {g1, g2, g3, g4}. The distance
between {f1, f2}, and each graph g ∈ G is shown on the top of each graph, e.g., g1 and g2
are 1 distance away from {f1, f2}. Some edges in g are common to both {f1, f2}, and these
are represented by the intersection of ellipses. Hence, the total number of edges in g that are
isomorphic to {f1, f2} may be different for each g, e.g., g1 has 10 isomorphic edges, while
g2 has 8 isomorphic edges.

6.1 Feature selection

In this section, we discuss the characteristics of feature graphs used when a feature-index is
generated. Given D, gSpan [30] is used to extract frequent feature graphs. Feature frequency
is defined as follows.

Definition 11 (Feature frequency) The feature frequency of a feature graph f is |Df |,
where Df = {g | g ∈ D, f ⊆ g}, and it is denoted as f req(f ).

Given a feature graph f , f req(f ) denotes the number of graphs g ∈ D that contains f
as a subgraph.

By analyzing sets of feature graphs for groups of graphs, interesting observations were
made. First, selectivity of feature graphs is strongly related to filtering power. Selecting
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feature graphs that have lower feature frequency increases the number of candidate graphs.
To address this problem, feature graphs whose feature frequency is greater than a certain
threshold t are selected.

Second, the number of feature graphs in the set may be too large, and many of them are
not necessary to describe the graphs in the same group. This is because there are feature
graphs, f ′ and f , where f ′ is a subgraph of f . Expressing the same set of graphs using f ′
and f do not improve filtering power, as it leads to perform unnecessary isomorphism tests.
To fix this problem, we select the feature graphs that no other feature graphs in the set are
supergraphs of those selected feature graphs, i.e., {f ′ | f ′, f ∈ FG, f

′ �⊆ f }.
Third, even if the feature graphs are selected as above, some feature graphs are over-

lapped in a way that, two feature graph edges, one from each feature graph, may be mapped
to the same edge in a data graph g. According to our filtering rules, it is better if the number
of overlapped edges between these feature graphs are reduced, as that allows us to index
more number of distinct edges found in data graphs. Hence, we try to select feature graphs
that do not have overlapping edges. It is, however, often not possible to select such feature
graphs, because those feature graphs may not exist or even if they exist, finding them is
expensive. To solve this problem, we select feature graphs that have as little overlapping
edges as possible. To do so, we select a set of feature graphs such that, the number of dis-
tinct edges in the union of all edges in the graphs is bigger than a certain threshold. The
threshold is determined by the maximum number of edges that may be overlapped between
two feature graphs. This establishes an inequality with the number of overlapping edges in
g as shown below.

|E(Fg)| ≥ |E(f1)| + ...+ |E(fn)| −mn (5)

where m is the maximum number of overlapping edges allowed between two feature graphs.
After these set of feature graphs are selected, exact number of matching edges for each
graph is calculated by performing subgraph isomorphism tests while a feature-index is
constructed.

7 Similarity search framework

In this section, given a query graph q , a graph database D, an edge relaxation σ , a distance
relaxation k, and a feature-index F , we describe how MMCS-based graph similarity search
is performed. Algorithm 5 describes the overall procedure.

Lines 2–7: When a query q is issued, q is processed for each feature index-entry
(FG, (d,G)) ∈ F . For each feature graph f ∈ FG, f is checked
whether f is subgraph-isomorphic to q . If there exists f ∈ FG that is
not subgraph-isomorphic to q , or if the number of non-matching edges in
f is > σ , we stop processing the current (FG, (d,G)), and process the
next (FG, (d,G)) ∈ F , as the number of missing edges between q and G

already exceeds σ , i.e., applying FR 1.
Lines 8–10: Next, we calculate the total number of the edges that are not subgraph-

isomorphic to q . If this value, denoted as γ , is > σ , we stop processing the
current (FG, (d,G)) and process the next (FG, (d,G)) ∈ F , i.e., applying
FR 2.

Lines 12–22: Next, for each g ∈ G, we check whether the minimum number of edges
that can be missed is > σ , and if so, g is discarded, i.e., applying FR 3 and
3′. Otherwise, we check whether the maximum number of non-matching
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Algorithm 5: GraphSimilaritySearch(q,D,F , σ, k)
input : q: a query graph; D: graph database; F : feature-index; σ : edge relaxation factor;

k: edge connectivity factor
output : R: matching graphs

1 R = {}; C = {}; /* graph result and candidate set */
2 foreach (FG, (d,G)) ∈ F do
3 foreach f ∈ F do
4 find q′ ⊆ q that is subgraph-isomorphic to f ;
5 if number of non-matching edges in f > σ then
6 Go to the next (FG, (d,G)); /* Filtering Rule 1 */

7 M = M ∪ {matching edges in q}
8 γ = E(FG) \M; /* cal non-matching edges */
9 if |E(γ )| > σ then

10 Go to the next (FG, (d,G)); /* Filtering Rule 2 */
11 else
12 foreach g ∈ G do
13 |E(β)| = d;
14 α = E(q) \ E(FG);
15 if |E(α)| − |E(β)| > σ then
16 g is unmatched. /* Filtering Rule 3 */
17 else if |E(mcs(FG, g))| − |E(M)| + |E(β)| − |E(α)| > σ then
18 g is unmatched. /* Filtering Rule 3’ */

19 else if |E(α)| ≤ σ and |E(mcs(FG, g))| − |E(M)| + |E(β)| ≤
σ and all lengths of spaths are ≤ k then

20 R = R ∪ {g} /* Validation Rules */

21 else
22 C = C ∪ {g} /* Candidates */

23 foreach g ∈ C do
24 if dist (q, g) ≤ σ and dist (g, q) ≤ σ then
25 R = R ∪ {g}
26 return R;

edges is ≤ σ , and if so, g is a potential matching graph. We then check if
the lengths of all spaths are ≤ k, and if so, g is added to the graph results
set, R, i.e., applying VR. All other graphs are added to the candidate graph
set, C. The above procedure is repeated for all (FG, (d,G)) ∈ F .

Lines 23–25: Lastly, for each g ∈ C, we check dist (q, g) ≤ σ and dist (g, q) ≤ σ , and
if so, g is added to C. Note that, checking dist (g, q) does not involve any
graph isomorphism tests. Finally, the graph result set is returned to the user.

8 Experiment

This section presents experimental results in detail. All experiments were executed on an
Intel i7 2.8 GHz desktop with 4 GB ram running Linux with 2.6 kernel. Our approach was
implemented in Java 1.6.

The AIDS antiviral dataset is a collection of chemical compounds that are made pub-
licly available by Developmental Therapeutics Program.1 The dataset contains chemical

1http://dtp.nci.nih.gov/docs/aids/aids data.html

http://dtp.nci.nih.gov/docs/aids/aids_data.html
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Figure 9 Building a
feature-index
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compounds for evidence of anti-HIV activity. A real-world usecase includes, given a
known/unknown chemical compound q , possibly related to HIV/anti-HIV activity, find
a list of known chemical compounds that could be related to q , such as results of oxi-
dation/reduction/other chemical reactions of q . Then, researchers can further conduct
experiments to verify whether there is a connection between q and each compound, and
how addition/removal of organic atoms/compounds affect q . In this case, the system helps
researchers to reduce the number of chemical compounds to verify.

A subset of dataset, which was prepared by Yan et al [31],2 was used by many recent
related works [4, 21, 22, 31, 32] for performance studies. The same dataset was used to
evaluate our technique. The dataset contains 10,000 graphs with 51 distinct labels, and each
graph contains 25.4 nodes and 27.4 edges on average. As for the query sets, following the
previous works [4, 21, 22, 31], Q8, Q12, Q16, Q20, and Q24 query sets are used. Each
query set, Qi, contains 1,000 query graphs with i edges. To generate large datasets, we used
a synthetic graph data generator from He & Singh [11], and Qi query sets are generated by
extracting random subgraphs with size i and modified by adding/removing x random edges.
Lastly, the processing time is the average processing time per query.

In biochemistry and metabolic engineering, the typical size of chemical compounds is
around 10. This is relatively small compared to the graphs used in other domains, such as
social network graph, which can be greater than millions. However, real-world examples in
Section 1 and AIDS dataset show the typical size of chemical compounds that biochemistry
researchers analyze. Unlike social network, in biochemistry, supporting a large number of
small graphs is more important in this domain.

Figure 9 shows the feature-index construction time. As the size of dataset increases, the
construction time almost linearly increases. This is because, the number of isomorphism
tests that performed between feature graphs and data graphs are linearly increased. Also, the
size of feature graphs remains almost constant, and the size is not affected by the number of
data graphs.

Figure 10 shows the processing time when queries are evaluated with and without using
the feature-index. The experiment shows that sequentially checking for dist (q, g) ≤ σ

individually is several orders of magnitude slower than using the feature-index.
Figure 10 shows that our approach performs and scales better than the sequential

approach. The rapid increase of processing time at the beginning only indicates that the fil-
tering power is reduced for the dataset. This is more related to the characteristics of AIDS

2http://www.cs.ucsb.edu/∼xyan/software.htm

http://www.cs.ucsb.edu/~xyan/software.htm
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Figure 10 Comparing seq and
feature-index
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dataset that we used. However, as the number of queries increases, the increase of process-
ing time cannot be higher than that of sequential approach, due to our filtering rules while
searching for candidate graphs. For the following experiments, we use the feature-index
generated in the pre-processing phase.

Figure 11 shows the processing time for evaluating the queries with various values of σ
and k. The processing time increases as σ increases, and this is related to the number of
verification algorithms that must be executed. As the value of k increases, the processing
time also increases, and this indicates the additional overhead on executing the verification
algorithm. We set k = 1 and compared the performance with DistVP. The performance dif-
ference for smaller queries is related to smaller number of candidate graphs to verify. When
the sizes of candidate graphs to verify are almost the same, our approach slows down due
to extra filtering/verification steps that need to be done. This is related to the semantics of
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Figure 11 Processing queries with different σ



World Wide Web

Figure 12 Comparing filtering
power
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our distance measure, which is not supported by previous work. However, our approach
performs well for the queries whose size is less than or equal to 16, which is the typi-
cal chemical compound size in biochemistry and metabolic engineering as the example in
Section 1 shows.

Figure 12 shows the number of filtered graphs when our filtering rules are applied.
Our filtering rules can remove more non-matching graphs, especially for the queries with
smaller number of edges, because in the filtering phase, the graphs that do not satisfy both
dist (q, g) ≤ σ and dist (g, q) ≤ σ are also removed. In this experiment, the filtering
power of our approach is related to the number of matching graphs in the AIDS dataset. For
smaller graphs, there are more graphs that are considered as matching graphs by MMCS,
but rejected by our approach, due to the distance constraints between common components.
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Figure 13 Number of filtered graphs with different σ
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Figure 14 Filtering and
verification, σ = 2
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But for bigger graphs, there are fewer graphs that are rejected by our approach, because
most bigger graphs in the dataset that satisfy MMCS constraints also satisfy our distance
measure. This is related to the size of common components. As the size of graph increases,
the size of common component also increases, and that reflects to reducing the distance
between these components.

Figure 13 shows the number of graphs filtered by our filtering rules. Each filtering rule
has different filtering power. Filtering Rule (FR) 1 and 2 are generally more effective on
smaller query sets while FR 3 is more effective on larger query sets. This is related to the
size of feature graphs and the size of data graphs. Smaller queries can only be filtered by
smaller feature graphs. If the size of feature graphs in the index are bigger than the feature
graphs contained by query graphs, the data graphs that are indexed with larger feature graphs
can be discarded. When the size of query graphs are small, there are relatively many such
data graphs, and these data graphs are all discarded by FR 1 and 2. FR 3 discards the data
graphs that contain similar set of feature graphs as a query graph, but much larger than the
query graph.

Figure 14 shows the time spent when filtering and verification algorithm with different k
values are performed. This figure shows that the verification algorithm dominates the overall
processing time. Also, similar patterns as Figure 11 are observed, and the explanation is
similar.

Figure 15 shows the processing time when query graphs are evaluated on various sizes
of datasets. Figure 15a shows the overhead when Q12 with different k values are evaluated.
The difference on processing time reflects the extra number of verification algorithms that
performed. Figure 15b shows the overhead when Q12 and Q16 are evaluated. Similarly, the
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Figure 15 Testing scalability
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Figure 16 Effectiveness of using MMCS

processing time difference reflects the extra number of steps required by the verification
algorithm.

To test effectiveness of MMCS-based graph similarity search, we count the number of
graphs that contain single MCSs and multiple MCS′s. Figure 16 shows the number of
matching graphs. In this experiment, 100 queries are randomly selected from Q12 and Q20.
Single represents the number of matching graphs, each of which contains a single MCS, and
multiple represents the number of newly discovered matching graphs that contain multiple
MCS′s. As the value of k increases, the number of matching graphs that contain multiple
MCS′s increases. This is because, as the length of spath increases, the search space for
finding MCS′s increases, and this leads to returning more matching graphs. Compared to
DistVP and Grafil, the set of matching graphs returned by our approach generally contains
what DistVP returns, and is contained by the graph set returned by Grafil. This is because,
compared to DistVP, we relaxes MCS semantics to include the graphs that are rejected by
DistVP. But, by restricting the distance between subgraphs in MMCS, we only return the
graphs that are more meaningful. By increasing (or decreasing) the distance between sub-
graphs in MMCS, the overlap between the sets of matching graphs returned by our approach
and Grafil increases (or decreases).

9 Conclusion

In this paper, we study the problem of graph similarity search. We proposed the MMCS-
based graph similarity distance measure to retrieve previously undiscovered similar graphs,
and yet discard dissimilar graphs reported by many previous works. We then proposed a
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series of filtering and validation rules to effectively remove non-matching graphs by calcu-
lating the upper and lower bounds on the distances between a query and feature graphs, and
data and feature graphs. Then, an MMCS-based graph verification algorithm was proposed
to effectively verify candidate graphs. Lastly, a feature-index was proposed to group similar
data graphs and to efficiently support our filtering and validation rules. Experimental studies
on real datasets showed that our filtering techniques can significantly reduce the number of
candidate graphs, while our verification algorithm can efficiently verify candidate graphs.

A possible future work includes extending our technique to find a set of similar subgraphs
that exist in a large data graph with tens of thousands of vertices.
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